Resource Conservation Training

Filtration and Separation for Wastewater recovery

MA OTA 2008

Reasons to recover water

- It's the right thing to do
- Conservation through usage reduction and reuse is insufficient
- Supply Limited Town runs out every August
- Discharge limited POTW Permit volume limits reached.

Water Costs Money!

Particularly Rinse Water
 High Volume of water with a low level of contamination

Rinsewater control systems are a primary opportunity area for water conservation

Combined Water and Sewer Rates

Canton

- Supply \$6.20, Sewer \$7.82 per HCF (hundred cubic feet or 750 gallons)
- At 1000 gallon/day average, 250 days/year-
 - Total cost \$4697/yr
- Costs vary by town, from expensive to really expensive.

Sample combined Water and sewer rates

From 2007 MWRA Advisory board Rate Survey 1000 gallons Per Day for 250 days/year

MWRA Towns

Everett \$2800

Reading \$6458

Non MWRA

Springfield \$2110

Gloucester \$7027

Scaled Costs in Most Systems

- Canton facility above increased to 1300 gpd – unit cost above 1200 gpd is 57% higher.
- 1200 gpd costs \$5636
- 100 gpd costs \$735

\$6373

30% increased use

36% increased cost

Types of contaminants

- Solid Particles Dirt, Grit, Dust
- Oils and Grease
- Soaps and Detergents
- Dissolved Materials
 Acids and Bases
 Process Chemicals
 Salts and Minerals
 Metals

- Reuse untreated streams if possible, eg. for process cooling/heating or rinsing activity.
- Based on electricity costs, changing the temperature of one gallon of water one degree F saves \$.00034
- (.0024 kwh x \$0.14)

- Consider 1000
 gallons per day of
 waste water run
 through a heat
 exchanger and raised
 10 deg F
- Possible energy cost saving of \$3.40/day or \$850/year

- Avoid Making Soup
- Collecting and treating individual waste streams separately can be more cost effective than "End of Pipe" treatment of a tank of mixed contaminants.

Coarse filtration for non critical reuse

Screens and Strainers

Cartridge Filters

Bag Filters

Sand Beds

Chemical Treatment

Neutralization

Flocculation

Electrocoagulation

Membrane Filtration Systems for "clean" water

Microfiltration 1 micron = 10^{-3} millimeters

Ultrafiltration 0.01 - 0.1 microns = 10^{-5} - 10^{-4} mm

Nanofiltration 0.001 - 0.01 microns= 10^{-6} - 10^{-5} mm

Reverse Osmosis Angstrom units

Achieves 1 M-Ohm

Separation systems
 Distillation – Heat and Vacuum
 Electro-Deionization (EDI) Systems
 Media Bed Deionization
 Achieves 18 M-Ohm

10 GPM Bag Filter Housing

\$200-\$1000 Cost for housing

\$50-\$200 Replacement Bags

- 10 GPM UF System
- Actually Rated as a 15,000 GPD System
 Capital Cost around
 \$3500*

Can remove submicron particles, colloids, and macromolecules.

According to an AWWARF survey in 2002, the capital cost for low-pressure membrane system currently is in the range of \$0.18-\$0.23/gallon per day (gpd) (Lozier and Jacangelo, 2002)

- 1000 GDP RO System For Potable Water
 Capital cost \$5000-\$9000*
- Reject Stream requires management
- 1 Mega-ohm possible
- Removes Solutes, Ions

*U.S. Army Corps of Engineers Cost Estimates for RO Desalination Plants in Florida

- 1000 GPD DI System
- Capital Cost \$2500-\$3200
- Removes ions
- Can achieve 18 Mega-Ohm

*Remco

Operating Costs

-RO System (Mass. Electric rates) \$0.01-0.02/Gallon \$10-20/day Town Water Cost \$18/day

-DI System \$0.03-.04/Gallon \$40/day

Composite Systems Figure 3: EDR Reclaims RO Concentrate For 97% Water Recovery

^{*}Trademark of General Electric Company; may be registered in one or more countries.

Resources

OTA Materials

 Introduction to Membrane Technology in Wastewater Recycling

http://www.p2pays.org/ref/09/08866.htm

OTA is Here to **HELP YOU!**

Gerry Podlisny
Process Engineer/Environmental Analyst

gerald.podlisny@state.ma.us

(617) 626-1098

Office of Technical Assistance and Technology
Executive Office of Energy and Environmental Affairs
100 Cambridge Street, Suite 900
Boston, MA 02114

www.mass.gov/envir/ota

